江嘉欣, 黄健, 刘晓勇. 人工智能辅助群体伤伤情评估的实践探讨J. 职业卫生与应急救援, 2025, 43(6): 795-798. DOI: 10.16369/j.oher.issn.1007-1326.2025.240773
引用本文: 江嘉欣, 黄健, 刘晓勇. 人工智能辅助群体伤伤情评估的实践探讨J. 职业卫生与应急救援, 2025, 43(6): 795-798. DOI: 10.16369/j.oher.issn.1007-1326.2025.240773
JIANG Jiaxin, HUANG Jian, LIU Xiaoyong. A practical discussion on AI-assisted mass casualty injury assessmentJ. Occupational Health and Emergency Rescue, 2025, 43(6): 795-798. DOI: 10.16369/j.oher.issn.1007-1326.2025.240773
Citation: JIANG Jiaxin, HUANG Jian, LIU Xiaoyong. A practical discussion on AI-assisted mass casualty injury assessmentJ. Occupational Health and Emergency Rescue, 2025, 43(6): 795-798. DOI: 10.16369/j.oher.issn.1007-1326.2025.240773

人工智能辅助群体伤伤情评估的实践探讨

A practical discussion on AI-assisted mass casualty injury assessment

  • 摘要: 通过介绍人工智能(AI)辅助群体伤伤情评估的基本原理,以及AI辅助临床诊断、预后预测、优化资源调配、智能行为物理实现等实践,探讨人工智能技术在提高伤情评估的准确性、时效性和高效性中的作用,并讨论其在构建群体伤数据库和人工智能评估模型过程中面临的挑战,以期为群体伤事件的响应策略和紧急救治提供新的视角和方法。

     

    Abstract: By introducing the fundamental principles of artificial intelligence (AI)-assisted triage in mass casualty incidents, as well as the practical applications of AI to help clinical diagnosis, prognosis prediction, optimized resource allocation, and intelligent physical task execution, this study discussed the role of AI technology in improving the accuracy, timeliness, and efficiency of injury assessment. It further discussed the challenges encountered in constructing the mass casualty database and developing the AI-based assessment model, with the aim to provide new perspectives and methodologies for the emergency response and medical treatment in mass casualty.

     

/

返回文章
返回